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ABSTRACT

Tropical intraseasonal convective anomalies (TICAs) play a significant role in the coupled ocean–atmosphere
system and the Madden–Julian oscillation (MJO) is the primary mode of this variability. This study describes
statistical forecast models of intraseasonal variations. Twenty-four years of outgoing longwave radiation (OLR)
and zonal components of the wind at 200 (U200) and 850 hPa (U850) are used. The models use the principal
components (PCs) of combined EOF analysis of 20–90-day anomalies of OLR, U200, and U850 data. Forecast
models are developed for each lead time from 1 to 10 pentads and for winter and summer seasons separately.
The forecast models use a combination of the five most recent pentad values of the first five PCs of the combined
EOF of (OLR, U200, U850) to predict the future values of a given PCK (k 5 1, 5). The spatial structures are
obtained by reconstructing the fields of OLR, U200, and U850 using the forecasts of PCK (k 5 1, 5) and the
associated EOFs. Verification with independent winter and summer data indicates useful forecasts of the first
five PCs extending up to five pentads of lead time. The verification against 20–90-day anomalies indicates useful
forecasts of the reconstructed fields of OLR, U200, and U850 extending up to four pentads of lead time over
most of the Tropics. Furthermore, the statistical models provide useful forecasts of U200 and U850 intraseasonal
anomalies up to two to three pentads of lead times in portions of the North Pacific region.

1. Introduction

Several studies have demonstrated that intraseasonal
variations in tropical convective activity (roughly 10–
90 days) represent an important forcing mechanism in
the atmosphere (e.g., Rasmusson and Arkin 1993; Salby
and Hendon 1994). A recent climatology of tropical
intraseasonal convective anomalies has been discussed
in Jones et al. (2004a). On this time scale, the Madden–
Julian oscillation (MJO) is the dominant mode of trop-
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ical intraseasonal variability (Madden and Julian 1994).
The MJO influences the precipitation patterns associated
with the monsoons in Asia, Australia, North America,
and South America (Yasunari 1979; Lau and Chan 1986;
Mo 2000; Higgins and Shi 2001; Jones and Carvalho
2002). This influence has also been shown to modulate
rainfall variability and extreme events in the Americas
(Higgins et al. 2000; Jones 2000; Nogués-Paegle et al.
2000; Whitaker and Weickmann 2001; Carvalho et al.
2004). Furthermore, the eastward propagation of MJO
events over the equatorial Pacific Ocean significantly
modifies the thermocline structure via their connection
to westerly wind bursts (e.g., McPhaden 2002). Al-
though the MJO does not cause El Niño–Southern Os-
cillation (ENSO), the MJO contributes to its rate of



1 JUNE 2004 2079J O N E S E T A L .

development and (possibly) its ultimate intensity
through the generation of eastward-propagating oceanic
Kelvin waves (McPhaden 2002; Kessler 2001).

The influential nature of the MJO has also been noted
on medium-to-extended-range numerical weather fore-
casts. Ferranti et al. (1990), for instance, demonstrated
that forecast skills in the extratropics are significantly
improved when the errors associated with the represen-
tation of the tropical intraseasonal oscillation are min-
imized. Jones et al. (2004b) conducted predictability
experiments to show that the MJO influences the North-
ern Hemisphere weather predictability. However, a ma-
jor difficulty to evaluate the predictive skill of the MJO
and its impacts on medium-to-extended-range forecasts
relates to the inability that most numerical models have
to realistically represent the MJO (Lau and Chang 1992;
Hendon et al. 2000; Jones et al. 2000; Jones and
Schemm 2000). Currently, useful forecast skills of the
MJO from operational numerical models extend to only
about 7–10 days.

Motivated by the facts mentioned above, a few studies
have developed statistical techniques to estimate the pre-
dictive skill of the MJO. Waliser et al. (1999) used 18
yr of bandpassed (30–70 days) outgoing longwave ra-
diation (OLR) data and a statistical model based on
singular value decomposition. The model uses the two
most recent pentad maps of bandpassed OLR anomalies
as predictors and predicts the evolution of intraseasonal
OLR anomalies. In general, winter and summer season
validation against bandpassed anomalies indicates use-
ful skills out to 5–20 days over most of the Eastern
Hemisphere. Lo and Hendon (2000) used a lag regres-
sion model that uses as predictors the first two and first
three principal components of spatially filtered OLR and
streamfunction, respectively. The statistical model,
which was developed only for the boreal winter season,
indicates skillful forecasts out to 15 days of lead time.
Similarly, a combination of singular spectral analysis
and maximum entropy method employed by Mo (2001)
indicates correlation skills of 0.65 at lead times of four
pentads. Wheeler and Weickmann (2001) developed a
tropical wave theory filtering technique to forecast trop-
ical convectively coupled modes as determined by OLR
variability. In their model, useful statistical forecast skill
of the MJO was also in the range of 15–20 days. Thus,
despite differences in methodological approach, the
forecast skill of the MJO obtained with statistical models
is generally on the order of 15–20 days of lead time.

Recently, there has been an increasing interest in ex-
ploiting the predictability of weather and short-term cli-
mate variability on subseasonal time scales, that is, be-
yond two weeks but shorter than about two months
(Schubert et al. 2002). In this context, the MJO plays
an important role given its influence on weather and
climate variability in the Tropics as well as extratropics.
Therefore, the objective of this paper is to contribute to
this research effort by describing a statistical forecast
model of tropical intraseasonal convective anomalies

(TICAs). Datasets are described in section 2. The model
construction and validation with independent data are
presented in section 3. The evaluation of forecast skill
during winter and summer seasons are discussed in sec-
tion 4. Section 5 summarizes the results and conclu-
sions.

2. Data

Outgoing longwave radiation is employed as a proxy
for large-scale tropical convective activity (e.g., Lau and
Chan 1986; Jones et al. 1998). Pentads of OLR (5-day
nonoverlapping averages; 73 pentads yr21) were used
from 1–5 January 1979 to 27–31 December 2002 (1752
pentads). Additional information on changes in instru-
mentation, equator-crossing times, and inherent biases
in the OLR data are described in Chelliah and Arkin
(1992) and Lucas et al. (2001). The large-scale circu-
lation is described with pentads of the zonal components
of the wind at 200 (U200) and 850 hPa (U850) obtained
from the National Centers for Environmental Predic-
tion–National Center for Atmospheric Research
(NCEP–NCAR) reanalysis (Kalnay et al. 1996). The
spatial resolutions of the OLR, U200, and U850 fields
were decreased to 58 3 58 latitude–longitude to focus
on large-scale features of TICA characteristics, and the
domain of analysis extends from 608S to 608N and all
longitudes (1728 points in space).

The time series of OLR, U200, and U850 were filtered
in frequency domain with fast Fourier transform (FFT)
and only periods between 20 and 90 days were retained.
The OLR anomalies were additionally filtered in space
with a weighted average spatial filter such that each
filtered value is given by 5 0.5 3 OLR j 1OLR9j

1/8 3 OLRk, where the summation is for the eight8Sk51

neighbor points of OLR j.

3. Model construction

In this section, we describe in detail the steps involved
in the construction of the statistical forecast model. The
datasets of bandpassed-filtered OLR, U200, and U850
were first separated in two parts each with 876 pentads,
such that the period from 1–5 January 1979 to 27–31
December 1990 was used for model development and
the period from 1–5 January 1991 to 27–31 December
2002 for model validation. The results were insensitive
if the developing and validation samples were inverted.

a. Empirical orthogonal function analysis

To begin with, we discuss the results of empirical
orthogonal function (EOF) analysis (Kutzbach 1967),
because it forms the basis of our statistical forecast mod-
el. The EOF analysis was performed on the development
and validation samples separately. The results for the
validation sample (876 pentads) are discussed in this
section and they were computed for each field separately
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TABLE 1. Percentage of explained variance of the first 10 eigen-
values of EOF analysis of OLR, U200, U850 and combined EOF
(OLR, U20, U850). Sampling errors are indicated in parentheses.

Mode

Percentage of explained variance (sampling error)

OLR U200 U850
(OLR, U200,

U850)

1
2
3
4
5
6
7
8
9

10

7.18 (0.77)
5.79 (0,62)
3.43 (0.37)
2.76 (0.29)
2.54 (0.27)
2.27 (0.24)
2.01 (0.21)
1.78 (0.19)
1.75 (0.19)
1.71 (0.18)

5.13 (0.55)
4.65 (0.50)
3.61 (0.39)
3.38 (0.36)
3.07 (0.33)
2.91 (0.31)
2.77 (0.30)
2.57 (0.28)
2.21 (0.24)
2.15 (0.23)

4.63 (0.50)
4.47 (0.48)
4.08 (0.44)
3.92 (0.42)
3.63 (0.39)
3.45 (0.37)
2.96 (0.32)
2.90 (0.31)
2.72 (0.29)
2.42 (0.26)

5.13 (0.55)
4.30 (0.46)
2.46 (0.26)
2.13 (0.23)
2.03 (0.22)
1.84 (0.20)
1.79 (0.19)
1.62 (0.17)
1.56 (0.17)
1.49 (0.16)

31.22 32.46 35.19 24.34

as well as for them combined (OLR, U200, U850). The
selection of the spatial domain (608S–608N; all longi-
tudes) is motivated by our intent to develop a statistical
forecast model that captures the covariability of tropical
intraseasonal convective anomalies and extratropical
large-scale circulation (see also section 5). Prior to EOF
calculation, each grid point of each field was scaled by
the square root of the cosine of the latitude.

The EOF computation for a single field involves a
data matrix A with dimensions 876 pentads by 1728
points in space. Likewise, the combined EOF of (OLR,
U200, U850) has dimensions of 876 pentads by 5184
points in space (three parameters 3 1728). Because the
number of points in space is significantly larger than in
time, the eigenvector calculation was done on the cor-
relation matrix C with dimensions 876 3 876. This
alternate method of EOF computation (Hirose and Kutz-
bach 1969) is computationally efficient, and it ensures
that the estimated eigenvalues are stable (Preisendorfer
1988).

Table 1 shows the percentage of total intraseasonal
variance explained by the first 10 eigenvalues computed
for each field separately as well as for them combined
(OLR, U200, U850). The sampling error computed ac-
cording to North et al. (1982) and assuming independent
events every 10 pentads is also shown. Many previous
studies have shown that the first two EOFs capture the
propagating behavior of the MJO (Jones 2000; Lo and
Hendon 2000). In a recent study, Kessler (2001) pointed
out that some of the ENSO effect on the MJO is captured
by the third EOF. Together, the first three eigenvalues
account for 16.4%, 13.4%, 13.2%, and 11.9% of the
OLR, U200, U850, and (OLR, U200, U850) calcula-
tions, respectively. In addition, there are not large dif-
ferences in the percentages of variance explained by the
first three eigenvalues for the different EOF analysis.
The cumulative percentages of total variance explained
by the first 10 eigenvalues are also indicated.

Figure 1 shows the spatial variability corresponding
to the first combined EOF (OLR, U200, U850). When

there is enhanced convective activity in the equatorial
Indian Ocean (top panel), easterlies and westerlies are
observed in the zonal wind component at 200 hPa (mid-
dle panel). Likewise, enhanced westerly and easterly
anomalies are observed in the zonal wind component
at 850 hPa (bottom panel). The second EOF pattern (Fig.
2) shows enhanced convection over Indonesia (top pan-
el) and the corresponding westerly and easterly rela-
tionships in U200 (middle panel) and U850 anomalies
(bottom panel). Figure 3 displays the spatial variability
of intraseasonal anomalies of OLR, U200, and U850
associated with the third combined EOF.

As explained before, the combined EOF was com-
puted from the correlation matrix of OLR, U200, U850
data. An alternative procedure is to normalize each field
separately and then compute the covariance matrix and
EOFs. Although the results are similar, the former pro-
cedure results in more coherent spatial patterns that are
smoother than the latter method. Thus, the combined
EOF calculation from the correlation matrix was adopt-
ed.

The principal components (PCs) associated with the
combined EOF describe the time variability (not
shown). As it will be explained later, using the combined
EOF (OLR, U200, U850) to construct the forecast mod-
els provides slightly better results than the ones based
on the EOF of OLR by itself. In addition, the statistical
model based on the combined EOF has the advantage
of providing forecasts of all three fields together. Thus,
in the remainder of this paper we consider the two sets
of PCs and the spatial patterns of the combined EOF
(OLR, U200, U850) derived from the development and
validation samples separately.

b. Winter forecast models

The statistical forecast models were developed for
winter and summer seasons separately. The develop-
ment (validation) sample was divided into 11 extended
winter seasons (from 17–21 November to 11–15 May)
1979/80–1989/90 (1991/92–2001/02). Our approach to
construct the statistical forecast models relies on the
‘‘memory’’ (i.e., autocorrelation) contained in the PCs
derived from the combined EOF as well as the lag cor-
relations among the PCs. We start the discussion by
showing the sensitivity tests performed and finally dis-
cussing the selected model.

The first step is to determine the appropriate model
order based on autoregressive processes. An autore-
gressive (AR) model of order m can be written as

AR(m):
m

PC (t 1 1) 5 f PC (t 2 j 1 1) 1 « , (1)OK j K t11
j51

where the left-hand side is the future value of the prin-
cipal component PCK, f j are the autoregressive param-
eters determined by the Yule–Walker equations and «t11

is a random component (Wilks 1995). The order selec-
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FIG. 1. First eigenvectors of combined EOF analysis of (top) OLR-, (middle) U200-, and
(bottom) U850-filtered (20–90 day) anomalies. Solid (dashed) contours indicate positive (negative)
values in arbitrary units. Contouring interval is 50.

tion of the AR model is important so that overfitting is
avoided. This question can be examined by computing
the Bayesian information criterion (BIC) and Akaike
information criterion (AIC) statistics given by

n
2BIC(m) 5 n ln S (m) 1 (m 1 1) ln(n) (2)«[ ]n 2 m 2 1

n
2AIC(m) 5 n ln S (m) 1 2(m 1 1), (3)«[ ]n 2 m 2 1

where n is the sample size and (m) is the sample white2S«

noise variance estimated with the recursive equation
proposed by Katz (1982):

2 2 2S (m) 5 [1 2 f (m)]S (m 2 1). (4)« m «

Note that (0) is the variance of the PCK series. The2S«

BIC and AIC statistics involve log-likelihood and a pen-
alty for the number of parameters. The better fitting
models exhibit less uncertainty in the residual variance
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FIG. 2. Second eigenvectors of combined EOF analysis of (top) OLR-, (middle) U200-, and
(bottom) U850-filtered (20–90 day) anomalies. Solid (dashed) contours indicate positive (negative)
values in arbitrary units. Contouring interval is 50.

and smaller white noise variance. The reader is referred
to Wilks (1995; 302–314) for further details.

The AR models were fitted to the first 10 PCs (k 5
1, 10) and the order of the models varied from m 5 1,
10. Stationarity for all models were tested following the
approach of Jenkins and Watts (1968). For simplicity,
Table 2 summarizes the results for the first five PCs and
the first six AR models. Both BIC and AIC statistics
systematically indicate that AR(5) minimizes the white
noise residual variance for PCK, K 5 1, 5. Thus, these

results suggest that using the five most recent values of
the PCs can provide efficient and stable AR models.

The second test consisted in developing forecast mod-
els such that the future values of a given PCK are de-
termined by multiple linear regressions of the previous
values of a pair of PCs, that is,

l m

PC (t 1 t) 5 B (t)PC (t 2 j 1 1). (5)O OK pj p
j51 p51

Note that there is one forecast model for each lead
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FIG. 3. Third eigenvectors of combined EOF analysis of (top) OLR-, (middle) U200-, and
(bottom) U850-filtered (20–90 day) anomalies. Solid (dashed) contours indicate positive (negative)
values in arbitrary units. Contouring interval is 50.

time t, which is computed for t 5 1, 10 pentads. In
this experiment, we are concerned with testing the sen-
sitivity to increasing the lag l. To illustrate this, we
show the results for the first two PCs of the combined
EOF (OLR, U200, U850), because the results were sim-
ilar for all 10 PCs. Thus, in this case, k 5 m 5 1, 2
and l varied from 1 to 6 for the most recent pentads.
The multiple linear regressions were determined from
the developing sample.

Figure 4 shows the forecast skill of the different PC1

and PC2 models using the validation sample. The cor-
relations for PC1 models (Fig. 4a) show that there is a
large improvement when l is greater than two pentads.
In particular, for l 5 5 pentads, the correlation is slight-
ly above 0.5 at five pentads of lead time. Another way
of evaluating the forecast skill is by computing stan-
dardized root-mean-square error (rmse) (Fig. 4c). The
forecasts models using l $ 4 pentads have smaller error
growth than models l # 3 pentads and reach a value
of rms 5 1 by about five pentads of lead time. Similar
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TABLE 2. Winter results from AR models fitted to the first five PCs
of combined EO analysis (OLR, U200, U850). Lag, m indicates the
order of the AR model, Rm is the mth lag autocorrelation, (m) is2Se

the white noise residual variance, and BIC and AIC are the statistics
used to evaluate the best order of the AR E 2 m 5 3102n model.
Bold values indicate local minimum.

Winter AR models

Lag, m Rm (m)2Se BIC AIC

PC1 0
1
2
3
4
5
6

1.00
0.71
0.13

20.35
20.53
20.52
20.39

1.219E-03
5.998E-04
2.315E-04
2.157E-04
1.847E-04
1.710E-04
1.709E-04

22643.0
22923.9
23293.9
23314.9
23369.4
23393.0
23386.2

22651.0
22931.9
23305.8
23330.9
23389.3
23416.9
23414.1

PC2 0
1
2
3
4
5
6

1.00
0.72
0.14

20.33
20.54
20.53
20.39

1.467E-03
7.073E-04
2.725E-04
2.586E-04
2.267E-04
2.137E-04
2.137E-04

22569.9
22858.6
23229.4
23243.0
23288.2
23304.6
23297.7

22577.9
22866.6
23241.4
23259.0
233.08.1
23328.5
23325.6

PC3 0
1
2
3
4
5
6

1.00
0.65
0.02

20.36
20.38
20.29
20.24

1.272E-03
7.328E-04
3.726E-04
3.478E-04
3.248E-04
3.030E-04
3.018E-04

22626.3
22844.6
23105.5
23125.8
23145.8
23166.4
23160.9

22634.3
22852.6
23117.5
23141.7
23165.7
23190.3
23188.8

PC4 0
1
2
3
4
5
6

1.00
0.71
0.15

20.23
20.35
20.39
20.42

1.182E-03
5.913E-04
2.989E-04
2.688E-04
2.364E-04
2.104E-04
2.104E-04

22655.3
22929.6
23192.8
23227.8
23271.6
23310.8
23303.8

22663.3
22937.6
23204.7
23243.8
23291.5
23334.7
23331.7

PC5 0
1
2
3
4
5
6

1.00
0.59

20.13
20.47
20.36
20.18
20.1128

1.122E-03
7.299E-04
3.338E-04
2.983E-04
2.573E-04
2.448E-04
2.448E-04

22675.9
22846.2
23149.0
23186.5
23238.1
23250.8
23243.8

22683.8
22854.2
23161.0
23202.4
23258.0
23274.7
23271.7

behavior is observed for the validation of forecast mod-
els for PC2 (Figs. 4b,d). Increasing l . 6 pentads brings
little improvement. These results suggest that forecasts
models based on PCs that use the five most recent pen-
tads can provide useful forecasts of the MJO. The choice
of l 5 5 pentads is consistent with the results of the
AR models described before. It is also interesting that
l 5 5 pentads is about half of the life cycle of the MJO.

The third test performed was intended to evaluate how
much skill is gained by increasing the number of PCs
as predictors in the multiple linear regressions. In order
to address this issue, we fixed l 5 1 pentad and in-
creased the number of PCs as predictors:

m

PC (t 1 t) 5 B (t)PC (t 2 1). (6)OK p p
p51

In this experiment, we varied K 5 1, 10 and m 5 1,
10. To make the presentation more manageable, we
show the results for K 5 1, 2 and m 5 1, 10. The

regression parameters were determined from the devel-
oping sample and Table 3 shows the forecast verification
obtained with the validation sample.

In contrast to increasing the lag l, increasing the num-
ber of PCs as predictors does not show obvious results,
although some tendencies are perceptible. For instance,
the correlation for PC1 forecast using only PC1 as pre-
dictor is 0.72 at one pentad of lead time (Table 3, first
row). Increasing the number of PCs increases the skill
only to about four or five PCs, then there seems to be
a decrease in the forecast skill. The same comment can
be made for the PC2 verification. After collectively an-
alyzing the results for PCK, k 5 1, 5, it was concluded
that increasing the number of PCs to m 5 5 brings some
modest improvement in the forecast skill.

Based on the sensitivity tests described before, the
following forecast models are proposed:

m l

PC (t 1 t) 5 B (t)PC (t 2 j 1 1). (7)O OK pj p
p51 j51

For each PCK, k 5 1, 5 and each lead time t 5 1,
10 pentads, there are 25 predictors such that m 5 1, 5
and l 5 1, 5 pentads. The regression parameters for
the selected models were determined from the devel-
oping sample and Fig. 5 shows the skill for the vali-
dation sample. Except for PC4, forecast skills of all PCs
extend to about five pentads of lead time both in terms
of correlation and standardized rms errors. The superior
forecast skill relative to persistence is quite clear (Fig.
5 top, dashed line). In summary, our selected forecast
models use a combination of the five most recent pentad
values of the first five PCs of the combined EOF (OLR,
U200, U850) of intraseasonal anomalies to predict the
future values of a given PCK (k 5 1, 5).

c. Summer forecast models

The analysis for the construction of forecast models
for the summer season was developed in a similar man-
ner. The development (validation) sample was divided
into 12 extended summer seasons (from 16–20 May to
12–16 November) 1979–90 (1991–2002). For com-
pleteness, we show the same sensitivity tests described
before. Table 4 displays the AR models, BIC and AIC
statistics. Coincidently, the BIC and AIC statistics also
indicate that using AR models of order m 5 5 minimize
the residual white noise variance.

The experiment to test the sensitivity to increasing
lags l [Eq. (5)] is displayed in Fig. 6, which was com-
puted for the validation sample. Quite similar results to
the winter case are observed, and indicate that using the
five most recent pentad values produce useful forecast
skills up to about five pentads of lead time measured
with both correlations and standardized rms errors. Note
that relative to the winter case, forecast models for PC2
seem to exhibit slightly more skill (about six pentads).

Table 5 shows the results to test the sensitivity to
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FIG. 4. Winter sensitivity test to increasing lags of PC predictors [see Eq. (5)]. (a), (b) Correlations between forecasts and validation values
of PC1 and PC2. Each curve indicates the lag (one to six pentads). (c), (d) Standardized rms errors between forecasts and validation values
of PC1 and PC2. Verification is performed on 11 winter seasons of independent data.

TABLE 3. Winter forecast validations of (top) PC1 and (bottom) PC2. Lead times (pentads) are indicated in the leftmost vertical column.
The number of PCs used as predictors are indicated in the first horizontal line (1–10) [see Eq. (7) and text for details]. Values indicate
correlations between forecast and validation.

Winter validation—PC1 correlation

Lead 1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9

10

0.72
0.10
0.37
0.50
0.41
0.28
0.15

20.04
0.02
0.03

0.88
0.69
0.60
0.51
0.40
0.32
0.24
0.13
0.07
0.04

0.88
0.69
0.60
0.48
0.33
0.28
0.24
0.12
0.07
0.03

0.88
0.69
0.58
0.50
0.33
0.24
0.22
0.12
0.07
0.04

0.87
0.68
0.58
0.51
0.33
0.23
0.23
0.14
0.07
0.04

0.86
0.65
0.58
0.50
0.33
0.24
0.21
0.12
0.09
0.05

0.86
0.66
0.59
0.50
0.33
0.24
0.21
0.13
0.11
0.05

0.86
0.67
0.59
0.50
0.33
0.26
0.25
0.15
0.12
0.05

0.85
0.55
0.53
0.50
0.32
0.23
0.21
0.15
0.14
0.08

0.85
0.55
0.53
0.50
0.32
0.24
0.20
0.14
0.16
0.10

Winter validation—PC2 correlation

Lead 1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9

10

0.57
0.66
0.42
0.11
0.08
0.16
0.16
0.12
0.09
0.11

0.84
0.65
0.60
0.46
0.31
0.26
0.19
0.12
0.12
0.09

0.84
0.64
0.58
0.44
0.31
0.21
0.09
0.04
0.11
0.08

0.84
0.65
0.58
0.43
0.30
0.21
0.09
0.04
0.10
0.08

0.83
0.65
0.57
0.43
0.31
0.20
0.08
0.04
0.07
0.06

0.84
0.67
0.58
0.42
0.30
0.18
0.08
0.06
0.05
0.03

0.81
0.65
0.58
0.42
0.30
0.19
0.08
0.06
0.05
0.02

0.81
0.64
0.58
0.44
0.32
0.19
0.09
0.05
0.03
0.03

0.81
0.63
0.58
0.39
0.29
0.19
0.13
0.11
0.06
0.03

0.80
0.63
0.58
0.39
0.29
0.19
0.14
0.14
0.08
0.03
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FIG. 5. Winter validation of selected forecast model. Each curve
shows the validation of forecasts of PC1–PC5. (top) Correlations;
(bottom) standardized rmse. Dashed line in the top panel is the fore-
cast validation of PC1 obtained by persistence. Verification is per-
formed on 11 winter seasons of independent data.

TABLE 4. Summer results from AR models fitted to the first five
PCs of combined EOF analysis (OLR, U200, U850). Lag, m indicates
the order of the AR model, Rm is the mth lag autocorrelation, (m)2Se

is the white noise residual variance, and BIC and AIC are the statistics
used to evaluate the best order of the AR model (see text for details).
Bold values indicate local minimum.

Summer AR models

Lag, m Rm (m)2Se BIC AIC

PC1 0
1
2
3
4
5
6

1.00
0.68
0.07

20.36
20.46
20.38
20.26

1.101E-03
5.951E-04
2.639E-04
2.472E-04
2.282E-04
2.130E-04
2.128E-04

23010.1
23283.3
23637.3
23659.1
23687.5
23711.1
23704.4

23018.3
23291.5
23649.6
23675.5
23708.0
23735.7
23733.0

PC2 0
1
2
3
4
5
6

1.00
0.67
0.02

20.39
20.42
20.30
20.21

8.453E-04
4.709E-04
1.995E-04
1.749E-04
1.545E-04
1.447E-04
1.446E-04

23127.5
23387.2
23761.4
23812.7
23860.7
23882.6
23876.0

23135.6
23395.4
23773.7
23829.1
23881.2
23907.2
23904.7

PC3 0
1
2
3
4
5
6

1.00
0.65
0.00

20.41
20.43
20.30
20.18

1.025E-03
5.922E-04
2.650E-04
2.406E-04
2.154E-04
2.056E-04
2.054E-04

23041.8
23285.5
23635.3
23671.2
23713.2
23726.8
23720.0

23050.0
23293.7
23647.6
23687.6
23733.7
23751.4
23748.7

PC4 0
1
2
3
4
5
6

1.00
0.67
0.06

20.30
20.31
20.27
20.33

1.133E-03
6.267E-04
3.119E-04
2.640E-04
2.316E-04
2.034E-04
2.030E-04

22997.6
23260.3
23563.0
23629.9
23681.1
23731.4
23725.3

23005.8
23268.5
23575.3
23646.3
23701.6
23756.0
23753.9

PC5 0
1
2
3
4
5
6

1.00
0.56

20.17
20.44
20.25
20.10
20.17

1.088E-03
7.429E-04
3.683E-04
3.176E-04
2.813E-04
2.588E-04
2.587E-04

23015.4
23184.8
23489.2
23547.9
23594.7
23624.6
23617.6

23023.6
23193.0
23501.5
23564.3
23615.2
23649.2
23646.3

increasing the number of PCs as predictors [Eq. (6)].
As in the winter case, the increase in PCs as predictors
is not as systematic as increasing the lags l. At long
lead times (i.e., three to six pentads), the results also
suggest that increasing more than five PCs as predictors
decrease the forecast skill.

The selected forecast models for the summer season
assume the same form expressed in Eq. (7), that is, for
each PCK (k 5 1, 5), the forecast models use a com-
bination of the five most recent pentad values of the
first five PCs of the combined EOF as predictors. The
validations of the summer forecast models are shown
in Fig. 7 and, in general, indicate useful forecast skills
up to five pentads of lead time. It is interesting to note
that PC4 shows higher skill relative to the winter case,
whereas the opposite is observed for PC5.

Some final remarks regarding the construction of our
winter and summer forecast models are worth mention-
ing. Our forecast models are based on the PCs derived
from the combined EOF (OLR, U200, U850). We have
reproduced the forecasts models described before, how-
ever using the PCs from EOF analysis of OLR only.
Our selected forecast models [Eq. (7)] exhibit substan-
tial gains in forecast skill relative to the models that use
only the most recent pentads of PCs from the EOF of
OLR only, which is equivalent to fixing l 5 1 pentad
in Eq. (5). Such models have been investigated by Lo

and Hendon (2000, see their Fig. 11). The gain in terms
of correlations for PC1 (PC2) is about 28% (37%) av-
eraged in winter and summer for one to four pentads of
lead time. Increasing the lags, for instance, fixing l 5
5 pentads in Eq. (5), as it is the case in our selected
models, the gain in forecast skill is less significant. The
gain for PC1 (PC2) is 2.2% (1.6%) averaged in winter
and summer for one to four pentads of lead time. How-
ever, as indicated before, the models derived from the
combined EOF (OLR, U200, U850) have the additional
advantage of providing forecasts of all three fields to-
gether.

Our computation of combined EOF uses the entire
year and the forecast models were then derived sepa-
rating winter and summer seasons from the PCs. We
have attempted to first separate the data into winter and
summer seasons, compute the combined EOF, and then
derive the forecast models. This second approach how-
ever introduces a subtle difficulty to the problem. Note
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FIG. 6. Summer sensitivity test to increasing lags of PC predictors [see Eq. (5)]. (a), (b) Correlations between forecasts and validation
values of PC1 and PC2. Each curve indicates the lag (one to six pentads). (c), (d) Standardized rmse between forecasts and validation values
of PC1 and PC2. Verification is performed on 12 summer seasons of independent data.

TABLE 5. Summer forecast validations of (top) PC1 and (bottom) PC2. Lead times (pentads) are indicated in the leftmost vertical column.
The number of PCs used as predictors are indicated in the first horizontal line (1–10) [see Eq. (7) and text for details]. Values indicate
correlations between forecast and validation.

Summer validation—PC1 correlation

Lead 1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9

10

0.68
0.02
0.46
0.55
0.37
0.15

20.01
0.07
0.04

20.01

0.83
0.68
0.71
0.58
0.37
0.26
0.26
0.23
0.09

20.03

0.82
0.67
0.71
0.57
0.34
0.24
0.26
0.25
0.10

20.05

0.83
0.67
0.71
0.59
0.37
0.19
0.19
0.25
0.15
0.03

0.82
0.67
0.71
0.60
0.37
0.23
0.24
0.25
0.14

20.04

0.81
0.65
0.71
0.58
0.31
0.21
0.25
0.23
0.14

20.05

0.82
0.66
0.71
0.58
0.30
0.14
0.13
0.17
0.14

20.1691

0.83
0.67
0.71
0.58
0.29
0.14
0.13
0.17
0.11

20.17

0.84
0.69
0.71
0.58
0.29
0.15
0.11
0.08
0.04

20.15

0.84
0.69
0.71
0.55
0.26
0.15
0.12
0.08
0.04
0.15

Winter validation—PC2 correlation

Lead 1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9

10

0.39
0.64
0.54
0.24

20.05
0.21
0.23
0.19
0.13
0.07

0.84
0.66
0.64
0.62
0.54
0.44
0.28
0.15
0.20
0.22

0.84
0.63
0.64
0.61
0.52
0.45
0.32
0.18
0.20
0.25

0.83
0.63
0.63
0.58
0.50
0.46
0.38
0.12

20.23
20.09

0.80
0.58
0.62
0.59
0.50
0.46
0.33

20.07
20.28
20.09

0.80
0.57
0.62
0.59
0.51
0.45
0.33

20.07
20.29
20.06

0.76
0.47
0.58
0.58
0.49
0.43
0.33

20.1619
20.2839
20.0489

0.77
0.48
0.56
0.56
0.49
0.43
0.27

20.19
20.28
20.05

0.77
0.47
0.56
0.58
0.50
0.43
0.27

20.15
20.25
20.03

0.78
0.50
0.57
0.58
0.50
0.42
0.26
0.15
0.25
0.04
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FIG. 7. Summer validation of selected forecast model. Each curve
shows the validation of forecasts of PC1–PC5. (top) Correlations;
(bottom) standardized rmse. Dashed line in the top panel is the fore-
cast validation of PC1 obtained by persistence. Verification is per-
formed on 12 summer seasons of independent data.

that our forecast models are based on previous values
of the PCs (l 5 5). The separate computation of com-
bined EOF in winter and summer seasons introduced
discontinuities (or uncorrelated values) near the bound-
aries of winter and summer data, which significantly
degraded the performance of the forecast models. The
same comment applies if one attempts to use cross val-
idation, instead of separating the data into developing
and validation samples as used here. Nevertheless, as
the forecast validation indicates, the methodology to
derive our forecast models does capture the seasonal
behavior of the MJO.

4. Statistical forecast skill

The final step in our statistical forecast system con-
sists in reconstructing the fields of OLR, U200, and
U850 using the forecasts of PCK, (k 5 1, 5) and the
associated EOFs for lead times t 5 1, 10 pentads. Name-
ly,

5

Y(t 1 t) 5 PC (t 1 t)EOF (Y ), (8)O K K
K51

where Y is the forecast of the intraseasonal anomaly of
OLR, U200, or U850 at lead time t and EOFK(Y) is the
kth EOF of OLR, U200, or U850.

In this section, we evaluate the spatial structure of
the forecast skills. To accomplish this, the winter and
summer forecast models were applied to the validation
sample and correlations between forecasts and observed
20–90-day anomalies of OLR, U200, and U850 were
computed.

The correlation between OLR forecasts verified
against 20–90-day OLR anomalies during 11 extended
winter seasons is shown in Fig. 8. A broad region of
correlations greater than 0.5 at 5 days of lead time co-
incides with the region of largest intraseasonal vari-
ability in the Indian and western Pacific Oceans. Sec-
ondary correlation maxima are also found over tropical
Africa and eastern South America and tropical Atlantic.
The correlations decrease in magnitude for increased
lead times, although they remain between 0.4 and 0.5
at 20 days of lead time over a large area in the Indian
Ocean and western Pacific.

The winter forecast verification of U200 anomalies
(Fig. 9) shows an extensive area of correlations greater
than 0.4 at 5 days of lead time over the tropical belt.
The maximum correlation in U200 forecasts is slightly
to the north of the region of maximum OLR correlations.
Note also that at 5 days of lead time, correlations are
significantly high over the North Pacific indicating use-
ful forecasts in the jet stream region. At 20 days of lead
time, the U200 correlations are still above 0.5 over the
Indian Ocean. Likewise, the correlation pattern found
in the verification of U850 forecasts (Fig. 10), shows
useful skill (above 0.5) at 5 days of lead time over the
tropical region extending over nearly all longitudes but
with a maximum over Indonesia. As in the U200 case,
correlations are substantially high over a large region
in the North Pacific. The correlations remain in the range
of 0.4–0.5 at 20 days of lead time over Indonesia and
the western Pacific Ocean.

The forecast verification of OLR anomalies against
20–90-day anomalies during the 12 summer seasons
shows an extensive region of correlations above 0.5 over
the eastern tropical hemisphere with two maxima over
the Indian Ocean and western Pacific (Fig. 11). Another
region of useful forecast skills is localized over the trop-
ical eastern Pacific. As it was pointed out in the last
section, we recall that our methodology computes com-
bined EOFs using data from the entire year and then
derives forecast models for winter and summer sepa-
rately. Note however that the forecast verification does
indicate that the methodology is capable of effectively
capturing seasonal variations in OLR. Compare, for in-
stance, the displaced skill toward the Indian–Asian mon-
soon as well as over Central America (cf. Fig. 8). For
increasing lead times, the forecast skill decreases to 0.4–
0.5 out to 20 days.

The correlations between U200 forecasts and 20–90-
day anomalies during the summer season also display
a pattern of high values over the Tropics (Fig. 12). In
particular, regions with high correlations are observed
over the Indian Ocean, Indonesia, and the eastern trop-
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FIG. 8. Correlation between forecasts and validation values of 20–90-day anomalies of OLR.
First contour is 0.2 and interval is 0.1. Lead times are indicated in each panel. Validation is
performed on 11 winter seasons of independent data.

ical Pacific. Correlations of 0.4–0.5 at lead times of 20
days are still found in some tropical regions. The ver-
ification of U850 forecasts (Fig. 13) displays useful fore-
cast skills over the entire Tropics at 5 days of lead time
with two maxima over Indonesia and the eastern tropical
Pacific. Correlations above 0.5 are still observed at 20
days of lead time.

The statistical forecast models used here have some
similarity to the ones developed by Lo and Hendon

(2000) in the sense that both models use linear regres-
sions to predict future values of PCs. Although it is not
our intent to compare both models, it is important to
note at least three major differences. First, our meth-
odology isolate intraseasonal variations by applying
bandpass filtering in frequency domain, whereas Lo and
Hendon (2000) remove the annual cycle, interannual
variations (from regressions to sea surface temperature),
and spatial filtering. It would be interesting to directly
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FIG. 9. Same as in Fig. 8, but for correlations between forecasts and validation values of 20–
90-day anomalies of U200.

compare both filtering techniques. A difficult problem
present in our methodology as well as in previous fore-
cast models of intraseasonal variations is that, if applied
in real-time forecasts, filtering likely incur in errors near
the initial conditions due to edge effects in the time
series. Second, the PCs in our model are derived from
the combined EOF (OLR, U200, and U850). Third, our
forecast models are based on multiple linear regression
equations that include a larger number of predictors than
in Lo and Hendon (2000). Although a direct comparison

between both models is difficult to make, it appears that
better forecast skills are obtained with the approach de-
scribed here.

5. Summary and conclusions

Intraseasonal variations in tropical convective activity
play a significant role in the coupled ocean–atmosphere
system and the Madden–Julian oscillation is the primary
mode of this variability. Recently, there has been an
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FIG. 10. Same as in Fig. 8, but for correlations between forecasts and validation values of 20–
90-day anomalies of U850.

increasing interest in exploiting the predictability of
weather and short-term climate variability on subsea-
sonal time scales. This study describes statistical fore-
cast models of intraseasonal variations. The models use
the PCs of combined EOF analysis of 20–90-day anom-
alies of OLR, U200, and U850 data. Forecast models
are developed for each lead time from 1 to 10 pentads
and for winter and summer seasons separately. The fore-
cast models use a combination of the five most recent
pentad values of the first five PCs of the combined EOF

(OLR, U200, U850) to predict the future values of a
given PCk (k 5 1, 5). The spatial structures are obtained
by reconstructing the fields of OLR, U200 and U850
using the forecasts of PCk, (k 5 1, 5) and the associated
EOFs. Verification with independent winter and summer
data indicates useful forecasts of the first five PCs ex-
tending up to five pentads of lead time. The verification
against 20–90-day anomalies indicates useful forecasts
of the reconstructed fields of OLR, U200, and U850
extending up to four pentads of lead time over most of
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FIG. 11. Correlation between forecasts and validation values of 20–90-day anomalies of OLR.
First contour is 0.2 and interval is 0.1. Lead times are indicated in each panel. Validation is
performed on 12 summer seasons of independent data.

the Tropics. Furthermore, the statistical models provide
useful forecasts of U200 and U850 intraseasonal anom-
alies up to two to three pentads of lead times in portions
of the North Pacific region.

A fundamental question relates to the limit of theo-
retical predictability of the MJO. In a recent study, Wal-
iser et al. (2003) addressed this topic with ensembles of
‘‘twin’’ predictability experiments with the National
Aeronautics and Space Administration (NASA) Goddard

Laboratory for Atmospheres (GLA) atmospheric general
circulation model (AGCM) using specified annual cycle
SSTs. A measure of potential predictability was con-
structed based on the ratio of the signal associated with
the MJO and the mean square error between sets of twin
forecasts. Analysis of the boreal winter predictability ra-
tio indicates that useful predictability for this model’s
MJO extends out to about 25–30 days for velocity po-
tential at 200 hPa and to about 10–15 days for rainfall.
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FIG. 12. Same as in Fig. 11, but for correlations between forecasts and validation values of
20–90-day anomalies of U200.

In addition, the predictability measure shows modest de-
pendence on the phase of the MJO, with greater pre-
dictability for the convective phase at short (,;5 days)
lead times and for the suppressed phase at longer (.;15
days) lead times. The predictability of intraseasonal var-
iability during periods of weak MJO activity is signifi-
cantly diminished compared to periods of strong MJO
activity. A somewhat similar limit of predictability was
found for the boreal summer season (Waliser et al.
2002b). However, a major characteristic of the MJO is

its high degree of variability from case-to-case, seasonal,
and interannual variations. Thus, estimating the dynam-
ical predictability of the MJO for different characteristics
(e.g., eastward propagations or interannual behavior) is
a research area that needs to wait until realistic repre-
sentations of the MJO in numerical forecast models are
attained. Our current research focuses on using the sta-
tistical forecast models described here to monitor and
predict the evolution of the MJO in real time (see online
at www.icess.ucsb.edu/asr).
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FIG. 13. Same as in Fig. 11, but for correlations between forecasts and validation values of
20–90-day anomalies of U850.
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